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PART I 
This article of the series deals with the evaporation 

which takes place after a rain stops, and its effect on 
stream flow. 

Throughout, as in the first two papers, the rate of rain- 
fall, the condition of the soil, and the velocity of the water 
are considered to be constant. 

In the first section of Part 11, equations are given which 
show the effect of evaporation on run-off. (As previously 
explained, for suffciently small drainage areas the voluiiie 
of rate of run-off can be re arded as synonymous with the 
discharge.) In  the secon 2 section, equations are derel- 
oped which give the dischmge from a rectangle when the 
effect of evaporation is considered; in this section the rate 
of evaporation (or evaporativity) is treated as constant. 
In the third section, equations are developed whicli give 
the discharge from a drainage area of any shape, such as 
discussed in section 4 of the second paper, and where the 
rate of evaporation (or evaporativity) is any function of 
time. In  the fourth section the diurnal variation of rate 
of run-off is discussed. I n  the fifth and last section a few 
hypothetical hydrographs are computed from which one 
can judge of the magnitude of the effect of evaporation 
on the discharge. 

A few definitions will here be given and explained. 
First of all it is essential when speaking of “rainfall” or 
“run-off’ or “evaporation” to keep clearly in mind esactly 
what is meant. Each of these three terms could be inter- 

Again each could 
{e interpreted as representing a volume of water, by mid- 
tiplying the depth by the area of a parcel of ground. Each 
of these terms could also be interpreted as representing a 
chunge in depth per unit time; in this sense, each term 
represents the first derivative of a depth with respect to 
time. Again each term could be interpreted as repre- 
senting a change in volume per unit fime, in this sense the 
term represents the first derivative of a volume with 
respect to time. Thus all told, four separate and distinct 
interpretations can be placed on each of the terms “rain- 
fall”, “run-off’, and “evaporation”. It is imperative to 
distinguish clearly between these meanings; and for this 
reason the practice of prefixing the words “rate of”, 
“volume of”, or “volume of rate of” to the basic word, 
as was done in the first paper in connection with “rainfall” 
and “run-off”, will be followed here for “evaporation.” 

The volume of water (not of water vapor) which is 
evaporated from a given area in a given interval of time 
is here denoted the volume of evaporation. Like volume 
of rainfall, volume of evaporation will be measured in 
mile-inches. It should be clearly understood that the 
volume of evaporation as here defined includes both the 
water evaporated from the ground, whether directly or 
through plants, and also the water evaporated from any 
free water surfaces which the drainage area in question 

reted as representing a depth of water. 

14929h37-1 

may contain as lakes, ponds, and streams draining the 
area. Naturally for some studies it is necessary to dis- 
tinguish between evaporation directly from the ground, 
evaporation through plants, etc., but it is not believed 
that these distinctions are necessary to forecast flood 
crests accurately. 

The volume of water which is evnporated per unit time 
from a given area at any given time is designated the 
volume of rate of ecaporation. 

The volume of rate of evaporation is volume per unit 
t h e  and therefore will be measured in mile-inches per 
hour. hfathernaticdly, the volume of rate of evaporation 
is the first derivative of volume of evaporation with respect 
to time. 

The volume of water which is evnporated from R given 
.ion in a given interval of time per unit area is here 

area, i. e., it is a length, and will be measurecl in inches. 
The volume of water which is being evaporated per unit 
time, from a given region at any given time, per unit. are?, 
is the rate of euaporation. The rate of evaporation IS 
volume per unit time divided by area, i. e., length per unit 
time, and will therefore be measured in inches per hour. 
Mathematically the rate of evaporation is the first deriva- 
tive of evaporation with respect to time. 

It is well known that, other things being equal, the rate 
of evaporation is greater when there is a strong wind. t h 9  
when there is no wind; likewise, the rate of evaporation IS 
greater when the air is warm than when the air IS cold; 
greater when the sun is shining than when the sky is over- 
cast; and greater when the relntive humidity is low than 
when it, is high. Recognizing these facts, consider the 
following two situations: First, a piece of ground during 
one year under specified conditions of culture, tempera- 
ture, wind, etc., shortly after a heavy rain of long dura- 
tion; and second, the same piece of ground during another 
yew at the same s ecifiecl conditions of culture, tcmpera- 
ture, wind and alfother pertinent things with this one 
difference: A long dry spell has been in progress. Clearly, 
the rate of evnportxtion will be greater in the first case t h m  
in the second. We can therefore say that the rate of 
evaporation may be dependent upon the amount of water 
remaining with the soil. That the rate of evaporation is 
not always dependent upon the amount of water remaining 
with the soil can be made clear by considering a slough. 
As long as there is water in the slough the rate of evapora- 
tion will be solely dependent on the wind, temperature and 
other weather elements and not upon the amount of water 
in the slough. 

Undoubtedly experiments are necessary to determine 
just when the rate of evaporation becomes dependent upon 
the amount of water remaining with the soil; but it would 
seem that when soil is water-logged, as it may be occa? 
sionally, the rate of evaporation would not be so dependent. 

“P cit led the evaporation. Evaporation is volume divided by 
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Run -off_______.___.....__.__ 
Rate of  run-off. ~ _.__...____ 

Volume of run-oR _______... ~ 

Volume of rate of run-off.. .. 

To take account of the fact that the rate of evaporation 
may be dependent upon the amount of water remaining 
with%he soil, it is nece,ssary to introduce two additional 
terms: The volume of water which would be evaporated 
from a given region, were an unlimited supply of water 
available in a given interval of tune per unit area is here 
called the evupora.tivity. The volume of water whic,li 
would be evaporated per unit time from a given re.gion 
were an unlimited supply of water available at any given 
time per unit area is designated the rate o j  evaporatiziity. 
Mathematically, the rate of evaporativity is the first 
derivative of evaporativity with respect to time. Eva.p- 
orativity is measured .in the same units as evaporation ; 
and rate of evaporativity 1s measured in the same units ns 
rate of evaporation. 

The use here of the term evaporativity, as distinguished 
from the term eyaporation, agrefs with the recommenda- 
tions of a comnuttee of the Se.ction of Hydrology of tmhe 
American Geophysical Union.1 

The distinction between evaporation a.nd evaporativity 
can be explained in a different way.: By multiplying the 
depth of rainfall by the area of a dramage area the volume 
of rainfall can be computed; if the depth of rainfall varies 
from place to place within the drainage area, the volume 
of rainfall should be computed by an mtegration process. 
In a similar way the volume of discharge on the stream 
which drains the region can be computed. If the time of 
beginning and the time of endiug of the time interval be 
so chosen that the amount of writer rer i i+ng wit,li the 
soil is the same at  the end as a t  the. begmning, and the 
volume of discharge is equal to t.he volunie of run-off, 
t.hen substracting the volume of discharge from the volume 
of rainfall we obtain a remainder which re,presents the 
volume of evaporation and is the actual amount of water 
which was lost from the drainage area during the given 
interval by evaporation processes. Now suppose a num- 
ber of evaporation pans be located in this drainRge area, 
and the depth of water lost from each pan t.0 the air by 
evaporation in this interval of time be measured and 
recorded. Then by an appropriate integration process (or 
simple multiplication if no variation is observed from pan 
to pan within the region) the total volume of water that 
would be lost to the air over the region in the interval 
were an unlimited supply qf water kept availnble could be 
computed. It is evident that for most, regions of the eart8h’s 
land surface the volume of evaporation computed from 
evaporation pan observations would esceed the volume 
of water obta.ined by subtracting the volume of run-off 
from the volume of rainfall. In  keeping with the defini- 
tions just given, we say that in general observctions 
obtained from evaporation pans repre.sent evaporativity 
and very seldom represent evaporation. 

All the terms defined in the first three articles, together 
with the units in which they are espressed, are tabulated 
below. 

Throughout the first three sections of the present 
article, evaporation ha.s been approached from two differ- 
ent oints of view, viz. (1) that evaporation is independent 
of t R e amount of water remaining with the soil; a.nd (2) 
that it is so dependent. Thus there are two sets of equa- 
tions: One set applying t,o the fii-st condition; the ot,her to 
the second. Both sets ha.ve been derived for the sake of 
completeness. It would seem that in the eastern part of 
the United States the soil seldom becomes water-logged 
except in winter and early spring, a,nd at  these times of 
the year the rate of eva.poration is very low anyway and 
probably could safely be neglected. The soil is not likely 
to become water-logged a t  other times of the year even 

I T h k  terms appear on p. 403 of Tronsactions qffhe American Gtophyaicnl Union (1035). 

aft ..________._....__._______ Inches. 
z __________..._..__.____ ~ _ _ _ _ _ _ _ _  Inches per hour. 

.4zdt or f f f zd.cdwdt ____._.. Mile-Inches. 
.4z= Z orf f rdrdui .______.____. Miles-inch- per hour. 

I: 
S: 

though the most intense rains do occur in 
Hence, when it is necessary to consider evaporation, it 
would seem that only the equations derived o n  the second 
assumption above would be required. Further comments 
on this question will be made when the theory here 
developed is applied to actual observations. 

TERhlS RELATED TO RUN-OFF 

I Units in which 
expressed :Term Syn1bols 

Rainfall ..._____.______._._._ 

Rate of rainfall ._________.__. 

Volume of  rainfall. ___.. . _ _  _ _  
Volume o f  rate of rainfall .... 

R ___.._....__________---.-----.- Inch-. 
dR -=r __.__.._...._____.__-----.- Inches per hour. 
dt 

A R  or Jf f rdrdud. - ..___ -. - .- Mile-inches. 
d r  or f f rdxdur ..______ _____._. Mile-inches per hour. 

E vaporation- -. _ _  - - _ _  _ _  _ _  - Edl. - - - - -. -. - - -. - - ~. -. . - - 
Rate of  evaporation ________. E ._____..________...._______ __.. 

Volume of evaporation. _ _ _ _ _  A E d t  or f f f Ehrdrut. _ _ _ _  - - 
Volume of  rate of evapora- 4 E o r  Jf E d r d w  ___________.___ 

I? v.iporatiiity _ _  . .___ - _ _  . ._ _ _  _ _  - - - -. . - - 
1:nte ofevaporfltivity _ _ _ _ _ _ _  E _._______________._____________ 

S: 
S: 
s: tion. 

& dl. - - - -. 

Inches. 
Inchas per hour. 
Mile-inches. 
Mile-inches per hour. 

Inches. 
Inches per hour. 

Volume o f  discharge ._. __. 

Discharge.. ._ .- .___ _ _  __.__. 
Rate of  discharge ____...___ 
Discharge tendency ____.____ 

The various assumptions which are made froin time to 
time throughout this series of articles are of two very 
difierent kinds: First are the special assumptions, of which 
may be mentioned the assumptions that the drainage area 
is rectangular, the rate of rainfall is constant, the velocity 
of the water is constant, etc. These special assumptions 
will one by one be removed; they +are made in order to 
have the early theoretical treatment tractable. Second 
are the jundumenta,Z assumptions. The first fundamental 
assumption, made in the first paper, is that the rate of 
run-off from a parcel of ground a t  any given t+e is 
directly proportional to the amount of water remaming 
ibith the soil a t  that time. No fundamental assumptions 
were made in the second paper. I n  this third paper a 
second and a third assumption are made: The second is: 
When the soil is not water-logged, the evaporation at  any 
given instant is directly proportional to the product of 
the amount of water remaining with the soil by the evap- 
orativity a t  that instant. The third is: When transpira- 
tion is constant, the rate of run-off at any given time is 
directly proportional to the amount of water remaining 
with the soil a t  that time; when the latter is constant, the 
rate of run-off a t  any given time is inversely proportional 
to the transpiration. 

These fundamental assumptions are believed to be 
plausible, and to be close approximations to, if not pre- 
cisely, what occurs in nature. They have been made 
not in order to have the mathematical treatment tractable 
but because no exact observations of these phenomena 
are available. 

ydt  _ _ _  _________.____________ Mileinches. 
v _ _ _ _ _ _ _ _  ~ _____.. ~ _ _ _ _ _ _ _ _  ._____ Mile-inches per hour. 
d y / d t .  __.______._._______________ Mi. in. hr-1 
dSy/dta _ _ _ _ _ _ _ _ _  __._._________ ___. Mi. in. hr -8 
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It will be pointed out in the fourth section of this paper 
that although the third fundamental assumption must be 
considered when dealing with the rate of run-off, it can 
safely be disregarded when dealing with stream flow from 
a drainage area of appreciable size. 

In  regard to the question of evaporation and its effect 
on stream flow, despite the fact that for the eastern part 
of the United States on1 about one-fourth of the mean 

evaporates; nevertheless, in a rain of sufficient heaviness 
and intensity to cause a flood the part which evaporates 
before the time of a flood crest is relatively sniall and 
usually has a negligible effect on the height of the flood 
crest. The hydrographs in the fifth section clearly show 
this. 

PART I1 

annual rainfall runs off w TI ile approximately three-fourths 

SECTION 1: R U N - O F F  CORRECTED FOR EVAPORATION 

The symbols in this paper have the same meanings 
given them in the preceding papers with this exception: 
t$ ( t )  henceforth represents depth of water remaining with 
the soil (not the volume as stated on page 318 of the first 

Equation (2) of paper I will now be generalized. 
A first generalization will be developed on the assump- 

tion that the amount of water remaining with the soil is 
sufficiently great for the rate of evaporation to be inde- 
pendent thereof. The rate of evaporation is a function 
of the wind , temperature, relative humidity, and possibly 
other things also, but for the present purpose the rate of 
evaporation can be regarded simply as a function of time. 
As evaporation may be considered to begin a t  the instant 
the rain stops, that is, when t=to (or when t’=t--to=O) 
let this function be E ( t ’ ) .  After the rain stops, the vol- 
ume of water remaining with the soil at  any given time is 
equal to the volume which fell as rain less the volume which 
ran off while i t  was raining, less the volume which has run 
off during the interval since the rain stopped, less the 
volume which has evaporated during this same interval. 
Expressed in symbols: 

paper). 

In accordance with the first fundamental assumption, 
t$ ( t )  can be replaced by cz, and on doing this and differ- 
entiating we get 

cAdz = - A  zdt - A E ( t ’ ) d t .  

Clearly dt = dt’; and dividing by cAdt‘ a id  transposing, 

d z  1 1 -+-z= --EO’), dt‘ c C 

a linear differential equation of the first order.‘ 
The integrating factor is 

hence 
t‘ ‘ l d z  1 1 1  1 

dt’ c C 
e c  -+-et z= --E(t’)eFt 

~~ 

1 It may be noted that both equations (1) and (2) in the first paper could haqe been 
derived by making use of some of the elementary theory of differeotlal equations, lostead 
of the more elementary processes actually used. 

Now z = zo when t’ = 0, that is, at  the time the rain stops; 
hence, evaluating the left member, transposing and mul- 
tiplying by e-7,  we have finally: 

t’ 

Equation (C-2) is the first generalized form of equation (2). 
I t  should be noted that when E@’) = O  then equation (C-2) 
reduces to equation (2) as it should. 

A second generalized form of equation (2) will next be 
derived. Suppose that at  the time the rain stops the 
amount of water remaining with the soil is not sufficiently 
great for the rate of evaporation to be independent thereol. 
In this case the rate of evaporativity can be regarded as a 
function of time. Let this function be &(t ’ ) .  Let t$(t’) 
be the depth of water remaining with the soil at  time f ’ ;  
then in accordance with the second fundamental assump- 
tion, the evaporation at  time t’ is given by K { E ( t ’ ) } =  
4 ( t ’ )  &(t’) ,  where K is a constant of proportionality. On 
substituting this value of E ( t ’ )  in the linear differential 
equation given above, we get 

As before, in accordance with the first fundamental 
assumption 4( t ’ )  can be replaced by c z ;  then we have 

dz 1 1 
-+-z= - -z E (1’). dt‘ c 

Clearly, this can be written in the form 

and by integrating 

Then from the definition of a logarithm and the fact that 
z=zo when t’=O, we have finally 

(C-2f) 

Equation (C-2f) is the second generalized form of equa- 
tion (2). When & ( t ’ )  = O  then equation (C-2f) reduces to 
equation (2) as it should. It is important to bear in mind 
that equation (C-2f) was derived on the assumption that 
the amount of water remaining with the soil at  the time 
the rain stops is not great enough for the rate of evapora- 
tion to be independent thereof. 

As already explained, c is a time constant and is meas- 
ured in hours. The constant K is a depth (length) con- 
stant and is measured in inches. I t  represents the depth 
of water which is just sufficient to saturate the soil enough 
to make the rate of evaporation independent of the amount 
of water remaining with the soil. This depth: necessary 
to produce just this degree of saturation, varies with the 
condition of the soil at the beginning of the rain. If a 
rain is so gentle that all the water soaks into the soil (that 
is, there IS no su$ace run-off), and also lasts just long 
enough to bring about this degree of soil saturation, then 
K is equal to czo. 

8 It should be emphasized that stream flow can be considered as arising from thrwC8U888, 
namely: (1)  Surface run-off from the last rain in the river basin; (2) ground wabr Nn-OR 
from this last rain. (3) grouud water run-off from antecedent rains; and in all the state- 
ments here being made about the constants c and I the stream flow due to the third cause 
is ignored. In other words, K represents the depth as stated only insofar as the stream flow 
from a single rain is being reprwnted. 
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From the above it is evident that K can be regarded as 
known; and it is known a t  the beginning of the rain. If 
the rain is so heavy and so long that after the rain stops 
equation (C-2) applies, then tlus equation should be used 
only for a limited range. The variable z in equation (C-2) 
should be replaced by the constant and the resulting 

equation solved for i; let this value of t be t. Then t 
represents the time a t  which the amount of water with 
the soil is such that thereafter the rate of evaporation is 
dependent on the amount which remains. I t  is evident 
then that _equation (C-2) applies on the range 0 6  t’6t - (or f o l  t S t+to) and equation (C-2f) applies on the range 
tSt ’6  OD (9’ ?+toS tS  a). If the riiin is such that 
when the rain stops, the evaporation is dependent on the 
amount of water remaining with the soil, then equation 
(C-2f) ap lies on the range 0 5  t’ S 0 3 .  

I n  the K nt paper the clischnrge equations were verified 
by integrating them between the limits of the respective 
ranges over which they apply, and ascertaining that the 
sum of the integrals thus obtained is equal to the volume 
of rainfdl which occurs over the drainage area. The 
same principle will now be used to verify the run-off 
equations just obtained by showing that the rainfall is 
equal to the sum of the run-off and the evaporation. 
Fmt, suppose the amount of water reninining with the 
soil at the time the rain stops is sniall enough for the 
evaporation to be dependent on this amount. The depth 
of water remaining with the soil at  the time the rain 
stops is 

=re ( 1-e -$) 
The sum of the run-off and the evaporation is 

which is equal to the depth remaining with the soil at  the 
time the rain stops. 

while the rate of evaporation is independent of this 
depth. In this case equation (C-2) is integrated between 
the limits 0 and 7. The evaporation plus the runoff from 
the t h e  the rain stops to the time 7 is 

Suppose now that TC ( 1-e -:) is so great that for a 

The depth remaining a t  time t is therefore 

and from the definition of 7 this must equal K. 
evaporation plus the runoff from the time 
has disappeared from the soil is 

Tho 
till all water 

= K  as it should. 

SECTION 2: DISCHARGE FROM RECTANGLE CORRECTED FOR 
EVAPORATION 

Equations will now be obtained for a rectangular clrain- 
age area, under the assumption that the amount of water 
remaining with the soil at  the time the rain stops is not 
great enough to make the evaporation independent 
thereof. It is further assumed in this simple case that 
the rate of evaporativity is constant. 

Undoubtedly there is a small amount of evaporation 
while the rain is in progress, but it is here assumed to be 
negligible, and for this reason no modifkation is necessaq 
in equations (3) and (4). Equntion ( 5 )  applies on the 
range to+- S t 6 Q) , and it follows by reasoning similar to 
that given in the first paper that on this range the dis- 
charge is obtained by integrating the volume of rate of 
runoff over the entire drainage area. Makin use of 
equation (C-2f) the volume of rate of runoff f rom the 
infhit,cpimal strip, TVdx, at  distance x above the gaging 
station is given by 

L 
2, 

- ( f ‘ - ; ) Ic--fG ( f q  Wzh= WZ& O dx 

On integrating W z d x  between the limits 0 and L we get 

Since zo=T(1-2)and t’=t-to we have finally 

This is equation (26). When & = 0 equation (36) reduces 
to equation (5) n,s it should. 

If to>- then for the range toS t S  to+- equation (6) re,- 

quires modification. It. follows by reasoning similar to 
that of the first paper, and that used in obtaining equation 
(26)) that on this range the discharge is 

L L 
V 21 

On performing the integration indicated, recalling that 
ra= (t-to)v, and simplifying, we get finally 
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When G=O equation (27) reduces to equation (6) as it 

If to<,-, equation (9) requires modification for the range 
L t,,StS; By reasoning similar to that just used, as well 

should. 
L 

as from- the explanations in the first paper, it follows that 
on this range the discharge is given by 

and this equation reduces to equation (9) when E = O .  

As previously e.xplained, the derivatives, with respect 
to 1,  of equations (3) and (4) are everywhere positive. 
I t  follows readily that the derivative of equation (28) is 
everywhere positive, and that for equation (26) is every- 
where negative. Hence whether toZLfv the t h e  of the 
0ood crest is obtained by equating the derivative of e ua- 
tion (27) with respect to time to zero and solving. If 1, 
represent the time of the crest, the equation obtained by 
equating the derivative of equation (27) to zero cannot 
be solved explicitly for t,. However, in the case of ye 
the maximum discharge, we can resort to the device, 
which was used several times in the second paper, of 

multiplying equation (27) by 2, differentiating the equa- 
t.ion thus obtained, setting dy/dt-0 and finally multiplying 

by ce-;. 

t 

1 

Or doing this we have 

When & = O  equation (29) reduces to equation (8) as it 
should. 

We are now ready to consider thc case.when the amount 
of water remaining with the soil a t  the time the rain stops 
is so great that the rate of evnporation is independent 
thereof. Here we further assume t,hat the rate of evnpora- 
tion, from the time the rain stops to the time the amount 
of water remaining with the soil is small enough to make 
the rate of evaporation dependent thereon, is constant. 

If E is constant, as we are now assuming, equation 

(C-2) takes the form ~ = e - ~ [ e , - E ( e ~ - - l ) ] ,  and the 
contribution to the discharge from the infinitesimal strip 

W d x  at distance x above the gaging station is M7 z,,e 

+E(e-:@-;)--l)]d;r. If ta<-, 2, then on the range 

tos t5-a equation (9) requires modification; and on this 
range the discharge is given by 

t‘ 

[ -;(I.-;> 
L 

L 

L \ 

Equntion (30) holds on the range toSISL/v with the 
further restriction that z>:. When E =0, equation (30) 
reduces to equation (9). 

If --5 t $  to+& and t>to, equation (6) must be changed. 
For this range (with the additional restriction that Z>K/C 
of course) the discharge is given by 

L 
2, - 2, 

w1iic.h reduces to oquat,ion (6) when E=O. 
L If to+-<tS a, with t’he additional restriction t h t  
1)- 

z>1, of course, the discharge is given by 

whkh reduces to equation ( 5 )  when E=O. 
Suppose that z=? C at time t=toSi, and suppose further 

t o + i Z t o + - ;  0 then on the range t , ,-t-iZtZ o) the discharge 
is given by 

L 

C. 

On performing tbe in tegrat’ion and simplifying we finally 

-e (t-to-L/u) ; -; (1-L/P) - e- i  - e 

(33) 
L 

Equcttion (33) holds on the range t S t ’ s i + - -  V When 

i=’t+t, equation (33) reduces to the form 

y = ~ 7 ~ c v e - ” (  e L~CV-  1) - WEL + 

When t is set equal to #+to in equation (32), the latter 
takes the form of equation (33s) also, (1s would be ea- 
pected. When t=?+t,+L/v equation (33) reduces to the 
form 

Equation (26) involves the factor z,=T( 1 -e- !). If this 
factor be replaced by K/C then equation (26) reduces to the 
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form of equation (33b) when t = t + t , + l / v .  This fact :e- 
quires some explanation. If, a t  the beginning of a ram, 
K be the depth of water (in inches) required to pr0duc.e 
just enough saturation of the soil for the rate of evapora- 
tion to be independent of the water which remains, and if 
this rain fell and saturated the soil instantaneously, then 
K=R, the depth of the rain. However, in nature there 
will never be such instantaneous rains; and t8he depth of 
rain required to produce this saturation of the soil is 
F ~ ( l - e - ‘ / ~ )  dt less than do; that is to say, the depth of 
rainfall, do, must be diminished by the run-off while the 
rain is in progress, and K is then equal to TC ( l -e -b’ , ) ,  or 
in other words K= zoc provided to does not exceed the time 
required to produce exactly this degree of saturation. 
Clearly, in general, to will either be less than or greater 
than this time. If to is less than this time, the rate of 
evaporation is dependent on the amount which remains 
and therefore one of the equations (26), (27) or (28) ap- 
plies. Each of these three equations involves the factor 
zo=r ( l - e - f ’ c ) .  If, however, to exceeds the time necessary 
for K inches of rainfa.11 to accumulate and remain with the 
soil, then equations (26), (27) and (28) are not at  once 
applichble but instead one of equations (30), (31) or (33) 
applies; equation (32) does not in this case apply on the 
range to+&< t S  0 3 ,  because eventually the water remnin- 
ing with the soil will diminish to a value that will make tmhe 
rate of evaporation dependent on this amount. Of course 
equation (32) would apply on this range if the soil were 
impervious and no rain soaked imto the soil, because n.s 
long as there were free water above an impervious soil the 
supply of water available insofar as the effect on the rnt,e 
of evaporation is concerned could be regarded as un1iniit)eil. 
When the water remains wit8h the soil long enough after the 
rain has stopped for the rate of evaporation to become 
dependent thereon an equation of the form of (26) applies; 
but in this case we cannot use the factor zo=r(l-e-bIc),  
because to exceeds the time required for zo to become just 
equal to K / C .  NOW T represents the time, after the rain 
stops, a t  which the water remaining with the soil has re- 
ceded to a value such that, the rate of evaporation will 
thereafter be dependent on the amount of water which 
remains. Hence when to exceeds the value for K to be 
equal to TC (l-e+OIc), and if ?>L/v, then equation (32) 
applies on the range to+L/vStSto+T, equation (33) on 
the range to+?S 5 to+F+L/t7, and equation (26), afhr  
the factor Z g z T  ( l -e -bIc)  is replaced by K / C ,  applies on 
the range t o+b+L/v$ tS  03. 

If both E and & are equal to zero, which is practically 
equivalent to saying that the air is so still and cloudy and 
damp that there can be no evaporation, we can replace ‘2 
by any value of t’ whatever; and equation (33) then re- 
duces to equation (5) as it should. 

If j<L/v equations (30) and (31) will not apply on t8he 
ranges stated, since in this case z has receded to a value 
equal to or less than K / C .  Equations for this situation will 
not be obtained. Their derivation, if desired, is per- 
fectly straight-forward, following the reasoning used in 
getting equation (33). 

It can be shown that the derivatives of equations (32) 
and (33) with respect t80 t are everywhere negative; that is, 
the flood crest cannot be given by these equations. If we 
differentiate equation (31) with respect to t we get 

V -  

If we set this derivative equal to zero, t is replaced by b,, 
the time of the flood crest. Solving for t,, we get 

The masimum discharge, yc ,  is obtained by using the same 
device as in deriving equation (29) ; and from equation (31 )  
we get in this way 

yc = lVr[L- (I, -  to)^] - WE( tc - t o )  t ~ .  (35) 
When E=O equation (34) reduces to equation (7), and 
equation (35) to equation (S), as they should. 

The question anses whether equation (30) furnishes, 
in certain cases, the masimum discharge. To consider 
this take equation (C-2). From this equation it is 

evide.nt8 z=O when t’E(b’)e‘’/“dt’. Equation (C-2) 

is only applicable till the time Tand since after the time 
represented by the solution of this last equation for t‘ 
equation (C-2) gives negative values for the r u n d  it is 
clear t.hat t cannot possibly exceed the value obtained by 
solving this equation. If E(b’) is constant this equation 
becomes 

- -E(ef ’ /c - l )  or e t ‘ / c = 1 + 3  whence t ’=c log 1+- - 
Thus since equation (C-2) is not applicable after this time 
neither is equation (30) which was based on equation 
(C-2). 

c ,  I 0 

E ( 3 “0 - 

The de,rivative of equation (30) is 

equate this to zero and solve: t - - c 1 o ( i (  etolc - 1 )  + e..] 
But, equat8ion (30) cannot possibly hold after 

t=to+c log ( 1  +z,/E). 
In Nature, it, will never even hold up to this value. 
Since z o = r ( l - d ~ ~ ~ )  and to=c log etolc we have 

- That is, t ,  representing 

the point where the derivative of equation (30) takes the 
zero value equals this value up to which equation (30) 
will never apply ih Nature. Therefore equation (30) 
cannot have a niasimum on the range for which i t  holds. 

SECTION 3: DISCHARGE FROM ANY DRAINAGE AREA 
CORRECTED FOR EVAPORATION 

The e.qnations of section 2, wherein the width of the 
drainage area, and the rate of evaporation (or evapora- 
tivity) were considered constant, serve as a simple illustra- 
tion of, and an introduction to, the underlying principles 
involved. in correcting the discharge for evaporation in 
general. More general equations will now be developed in 
which neither the width of the drainage area nor the rate 
of evaporation (or evaporativity) is treated as constant. 

The same mathemakical restrictions are placed on 
W(.r), the function which represents the width of the 
drainage mea, as in the second paper. The following 
mathematical restrictions are placed on the functions 
E (t’) and & (t’) which represent the rate of evaporation 
and rate of evaporativity respectively: 
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1. They are identically zero when t '<O; in other words 
before the rain stops there is no evaporation. 

2. They shall be single veluecl, except a t  points of 
discontinuity where they shall be two-valued. 

3. They shall be everywhere finite. 
4. They may assume an unlimited nuniber of zero 

values, but may not assume any negative value. 
5. They shall not have more than a finite number of 

discontinuities on a finite range. 
When e,quations (C-2) and (C-3f) were derived, no 

explicit assumptions were made about the functions 
E (t ' )  and & ( t ' ) .  Obviously these equations are valid if 
the functions are, continuous; but it should be not,ed that 
they also hold when E (t ' )  and & ( t ' )  are subject merely 
to the more general restric.tions just stated. 

Each of the restrictions listed is justified by the physical 
nature of the problem. The fourth restriction may 
require special c,omment since evaporation is sometimes 
loosely spoken of as negative rainfall. To rega.rd the 
evaporation whic.h may take place while rain is in proe oress 
as negative rainfall is certainly logicd. However, it doe,s 
not seem to be convenient to treat evaporation in this 
way after the rain stops. Neither does it seem to be 
altogether convenient to trent the occasional light shower 
which may occ,ur after the main heavy flood-causing rain 
as negat,ive evaporation. Further developnients niag 
make such treatment desirable but for the pre,sent the 
fourth restriction is imposed. 

I n  the following developments the discontinuity which 
may take place in the constant, c ,  during and after n rain 
is ignored, just as it has been previously. 'It was explained 
in the first paper. that the constnnt c may be thought of as 
consisting of two parts: one, c', due to the fact that water 
soaks into the soil and the other, c", clue t80 the fach that 
water sometimes remains up0.n the soil.' The constant 
c"=O when and only when the soil is saturated. The 
c.onstant c'=O when and only when the soil is not satu- 
rated and also the rate of rainfall is less than the infi1t'ra.- 
t.ion rate. If the. rate of rainfall exc,eed the infiltration 
rate and the soil is not saturated then neither c' nor c" 
is zero. Both c' and c" are never simultaneously zero. 
After an intense rain water niay remain upon the soil for 
some time after the rain stops even though the soil is 
not saturated because the rate of rainfall exeeded the 
infiltration rate. In  this case the rate of evaporation is 
independent of the depth of water rema.ining with the 
soil until and only until there is no wate,r remaining upon 
the soil. At this instant there is a discont'inuity in the 
constant c. The behavior of the constnnt c will be fully 
discussed in the fifth paper of this serie.s. 

Consider first the case where the soil contains so mwh 
water a t  the time the rain stops t8hat the ratme of cvapora- 
tion is independent of the amount which remains. The 
rate of run-off from each infinitesimal strip, W(z)dx ,  
above the gaging sta.tion is given by equa.tio.n (C-2). 
By integrating this expression between the lmt s  0 and 
L, making due allowance for the t'ime it takes for water 
to flow from where it fell as rain to t'he gaging station, 
we have 

Equation (C-5) expresses the discharge as a function of 
f, and holds on the range to+L/v5tS 03 with the addi- 
t8ional restriction that z > g / c .  When E(t') = 0 equation 
(C-5) becomes equation (B-5). For t'his reason we call 
it the seconcl generalized forni of equat,ion (5). When 
both W(L) and E(t') are const'nnts, equation (C-5) 
reduces to equation (32). When t=to+ L/v, equation 
(C-5) takes the form 

As stated in section 3, about equations (3) and (4), 
equat#ions (B-3) and (B-4) require no correction for 
evaporation. Equat,ions (B-6) and (B-9) do, however. 
The flood crest occurs on the range for which these equa- 
bions apply. Equation (C-6) below, now to be obtained, 
holds on the range to 5 t 5 to+ L/v with the two additional 
rest,rictions that t>Llv and z>K/c. By reasoning similar 
t80 t8hat used in all previous cases when this range was 
considered, it follows that for this range the discharge is 
given bv 

Since t ' = t - f 0 ,  xo= (!-to)?,, and z o = r ( l - e - f ~ ~ c )  the above 
expression can be written m the form 

When E(t') = O  equation (C-6) reduces to equation (B-6) 
and therefore is called the second generalized form of 
equation (6). When both W ( x )  and E@') are constants 
equation ((2-6) becomes ecluation (31). When t=to 
equation (C-6) becomes equation ( B 4 a ) ,  and when 
t=fo+L/v equation (C-6) becomes equation (C-5a). 
When t=L/u equation (C-6) tnkes the form 

For the case w1ie.n the rate of evaporation is independent 
of tthe water remaining with the soil, we still must con- 
sider the range tos t i  to+L/v with the two additional 
restrictions that to<L/v and z>K/c. To save space, 
however, the equation whkh applies to this range, which 
would be numbered (C-9), is not given; this equation 
((3-9) can be obtained by substituting tv for L in equation 
(C-6). Similar statements can be made for equation 
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(C-9) as were made for (C-6) when E(t')mO and when 
E(f')  and W(z) are constants. 

We proceed to find an expression for the time of the 
maximum discharge, and for the maximum discharge 
itself. By differentiating equation (C-6) with respect 
to t ,  equating to zero, simpllfying, and recalling that at  
the time of the crest t=t , ,  we finally get 

The solution of equation (C-7) for t ,  gives the time of the 
crest. If the drainage area is of such a shape that the 
crest may occur on the range t o 5  t 5 t ,+L/v where t < L / v  
then equation (C-7) should be modxed by substituting 
t p  for L. 

An expression for the maximum discharge is obtained by 
resorting to the usual device of multiplying erluation 
(C-6) by e"", then differentiating with respect to t ,  setting 
dy/dt=O, and finally multiplying by ce-ll,. We tthus get 

t.n--laD 
Yc=rJL  t.v-to W ( X ) d Z - 1  rn~(x)E(t,- to-x/v)dz.  (C-8) 

If the drainage area is such, and the rain so short, that 
the crest may occur before the time t = L / v ,  then t c i T  should 
be substituted for L in the above equation. 

The discharge equations thus far derived in this section, 
and hence the expressions for the maximum tliwharge 
and time of the flood crest obtained from them, nre valid 
only if zO>K/c, and then only till the t,ime that z diminishes 
to the value K/c. Discharge equations and expressions 
for the maximum discharge and time of flood crest will 
now be obtained for the case when zO<.K/c, that is to say, 
when the depth of water remaining with the soil at the 
time the rain stops is not great enough for the rate of 
evaporation to be independent of it. When this is the 
case equation (C-2f) gives the rate of run-off for each 
infinitesimal strip, u'(x)da: above the gaging station. By 
integrating the product, W(x)zdx ,  between the limits 0 
and L, taking account of the time required for the water 
to flow from where it fell as rain to the gaging station, 
we get 

1 
dz. (G5f )  -- (t'-r/o) (t')dl' 

'y = a i L  ~ ( x )  e e 

Equation (C-5f) holds on the range t o + L / v S t $  OJ with 
the restriction that 205 K/c. When E (t') 0 equation 
(C-5f) reduces to equation (B-5) and for this reason we 
call it the third generalized form of equation (5). When 
W(z)  and &(t ' )  are constants equation (C-5f) tnkes t'hc 
form of equation (26). When t + w  equation (C-5f) 
shows that y ~ 0 ,  which means that a t  a sufficiently long 
time after the rain stops (with no additional rains of 
course) the stream flow ceases. When t=to+L/v equation 
(C-5f) takes the form 

Consider now the range t o 6  t S  to+L/v with the further 
Under these condi- conditions that t > L / v  and zoSK/c.  

tion$ apd for this range the discbarge is given by: 

Since t'=a--to an$ q+t--to) and z o = r ( l - e - t d c )  the 
above espression simplifies to 

When & ( t ' )  = O  equation C-6f) reduces to equation 
(R-G), and for this reason we call equabion (C-6f) the 
third generalized form of equation (6). When both 
I1 ( x )  and &(t ' )  are constants equation (C-6f) becomes 
equation (27). When t=t(,, equation (G6f) takes the form 
of equation (B-4a), and when t= to+L/v  equation (C-6f) 
becomes equation (C-5g). When t = L / v  equation (G6f) 
hns the form 

(C-6g) 
The lmt discharge equation to be obtained is one for the 

range t o S t S t o + L / v  where t<L /v  and a S K / c .  For this 
range and these additional conditions equation (C-9f) 
applies; to save space i t  is not given; it can be immediately 
obtained from equation (Mf) by substituting tv for L. 
Corresponding statements can be made about the form to 
which equation fC-9f) simplifies when special assumptions 
are made about 13' (r)  and G ( t ' ) ,  as were made in regard to 
equation (C-Gf). 

We next proceed to obtain expressions for the time of 
the flood crest and for the maximum discharge. Dif- 
ferentiate equation (C-6f) with respect to t ,  set this 
derivative equal to zero, and simplify, recalling that when 
dy/dt=O t,lie time of the flood crest is indicated by t ,  and 
t , - t o= l* .  On doing this we have: 

The solution of equation (C-7f) for t *  gives the time of the 
floocl crest. If the drainage area is shaped so that the 
c.rest may be reached before the time Llv, and if in this 
case the rain is short enough, then tv should be substituted 
for L in this equation. 

An expression for the maximum discharge is obtained 
by using the usual device of multiplying equation (C-6f) 
by erlc, differentiating the equation thus obtained with 
re.spect to t ,  setting dy/dt=O and finally multiplying by 
c c t I c .  On doing this we get 

If the solution of equation (C-7f) for b *  shows that the 
time of the flood crest occurs before the time Llv, then 
tv should be substituted for L in equation (C-sf) to obtah 
the maximum discharge, 
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Before proceeding further, it will be useful to summarize 
briefly what has been accomplished thus far in the first 
three pa ers of this series. Section I of the first paper and 

All the remaining sections, excepting section 5 of the 
second paper, pertain to discharge equations and conclu- 
sions which can be drawn from them. Of the sections 
dealing with discharge equations, the first three in the 
second paper, and the second in the present paper, con- 
sider quite special conditions ; while they are instructive 
and interesting, nevertheless they lack generality and need 
not be considered further in this brief summary. The 
second section of the first paper, the fourth section of the 
second paper, and the present section are developed along 
closely similar lines. Thus the second section of the first 
paper derives the five discharge equations (3), (4), (5 ) ,  
(6), and (9). Likewise the fourth section of the second 
paper derives five discharge equations, bearing the same 
numbers with the letter B prefixed. The only difference 
between these two sets of equations is that in the former 
the drainage area is considered to be rectan 
the latter the drainage area may be of any s ape encount- 
tered in nature. These equations serve to express the 
discharge from the time the rain begins till the time the 
discharge has receded to the value it had a t  the beginning 
of the rain. Two case8 arise, one when the rain lasts long 
enough for water which fell as rain in that part of the 
drainage area most remote from the gage to flow to the 
gage; the other, when the rain did not last this long. The 
time required for water to flow from the most remote 
portion of a drainage area to the gage is called the con.- 
centratiola time; it has been expressed by L/v. The dhra- 
tion of the rain is expressed by to. Now regardless of 
whether the duration of the rain exceeds the concentration 
time or not, that is, whether t o i l l o ,  four equations are 
necessary to express the discharge as a function of time 
from the instant the rain begins till the stream flow has 
receded to the value it had at  the time the rain began. 
(It is understood, of course, that in this theoretical treat- 
ment no additional rains occur after the end of the single 
one under consideration.) If the duration of the rain 
exceeds the concentration time, the four equations required 
are equations (3), (4), (6), and (5) in that order; If the 
concentration time exceeds t,he duration of the rain the 
four equations required are successively (3), (9), (6), and 
(5) .  

section P of the present paper pertain to run-o$ equations. 

!Tar, while in 

If to>L/v, the ranges of the equations are- 
equation (3) or (B-3) 

equation (6) or (B-6) t&t6tO+L/V. 

equation ( 3 )  or (B-3) OdtSto. 
equation (9) or (B-9) 

OSt6 L/v. 
equation (4) or ( B 4 )  

equation (5) or (B-5) 

L/v S t S to. 

So+L/oS tS Q) . 
If to<L/u, the ranges of the equations are 

tfJStS L/v. 
equation (6) or (B-6) 
equation (5) or (B-5) to+L/u6tS Q). 

L/v S t S So+ L/v. 

Throughout the second section of the first paper, the 
fourth section of the second paper, and the present section, 
much care has been taken to show that at the limits of 
the ranges of these equations the discharge curve, as a 
whole, is continuous; in the second article it was pointed 
out that the rate of discharge curve also is continuous at  
these points, but that the discharge tendency curve is 
discontinuous. From the physical nature of the problem, 
the discharge curve would naturally be expected to be 
everywhere continuous. 

In the present section, discharge equations have been 
derived in which corqctions BF~J made for the evaporation 

which takes place after the rain stops. If the rate of 
evaporation is always de endent on the water remaining 

treatment of evaporation is rather simple and the d i e  
charge curve is expressed by the four equations (B-3), 
( B 4 ) ,  (G6f)  and (G5f) in that order if the duration of 
the rain exceeds the concentration time, and successively 
(B-3), (C-9f), (C-6f), and (C-5f) if the concentration time 
exceeds the duration of the rain. On the other hand if the 
rate of evaporation is aluvzys independent of the amount 
of water that remains with the soil, the discharge curve is 
expressed by the four equations (B-3), ( B 4 ) ,  (c-6), and 
(C-5) in that order if t,>L/v, and successively by (B-3), 
(C-9), (C-G), and (C-5) when to<L/v; but it is doubtful 
if this case ever occurs in nature. It would seem that the 
closest approach to such a condition would be when rain 
falls on ground that is deeply frozen and remains frozen 
until all surface water from the rain has run off. Actually 
when the rain lasts so long that zo exceeds K / c  and makea 
the rate of evaporation independent of the amount which 
remains, the rate of evaporation remains independent 
of this amount only so long as 2 exceeds K / c .  For this 
reason more than four equations are required to express 
the discharge curve. If 7 represents the time measured 
from the instant the rain stops, at  which the rate of run-off 
recedes to the value K / c ,  then for any small parcel of ground 
the rate of run-off is given by equation (C-2) during the 
interval 0 5 t' 5 i, and by equation (C-2f) after having 
replaced z,, by K / c  during the interval t' 5 . Whenever 
the rain lasts long enough to make ~0 exceed K / c ,  s k  equa- 
tions instead of four are necessary to represent the dis- 
charge curve. 

The additional equations necessary for a complete 
treatment will not be derived; only an explanation of 
how they may be obtained, and the ranges of their ap- 
plicability, are given. All the discharge equations in the 
three sections here summarized can be placed in one of 
three classes. One class comprises all those equations 
derived by integrating equation (1)  over the drainage 
area, with, of course, consideration of the time required 
for the water to flow from where it fell as rain to the gage. 
In the second class are placed all t'hose equations derived 
by integrating any one of the run-off equations (2), (C-2), 
or (C-2f) over the drainage area. To obtain an dis- 
charge equation which belongs to either of these c 9 asses, 
only one integration with respect to x is required. In 
the third class are placed those equations for which two 
integrations with respect to x were necessary. Equation 
(1) must be integrated over the proper portion of the 
drainage area, and one of the three run-off equations (2), 
(C-2), or (C-2f) must be integrated over the remainder 
of the drainage area. The flood crest always occurs on 
the range in which a discharge equation of this third class 

with the soil, as it actu f ly is after many rains, then the 

is applicable. 
When z is expressed for a certain interval by equation 

(C-2), and for a later interval by equation (C-2f) after zo 
is replaced by K / c ,  two cases arise, one when r>L/v and 
the other when ?<L/v. These two cases are somewhat 
analagous to those which arise according as the concen- 
tration time exceeds or is less than the duration of the 
rain. When ?>L/v it will never be necessary to perform 
more than two integrations with respect to x to obtain 
an expression for the discharge. One integration must 
be made on equation (C-2) over the proper ortion of 
the drainage area and the other on equation (K2f) over 
the remainder, in each case talring account of the time 
required for water travel. When i<L/v it is necessary 
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water opposite to that.of. gravity. 
the diurnal surge or variation m the rate of run-off. 

remaining with the soil at  time t’, 

This influence causes 

Take the usual expression for the amount of water 

A+ ( t ’ )  = AR- F(to) - AJ‘ zdt ’ - A E ( t  ’)dt’  , 
0 

and in accordance with the second fundamental assump- 

tion replace E ( t ’ )  by p ( t ’ ) E ( t ’ ) .  If-O(t‘) represents the 

magnitude of the force acting opposite to gravity whic.h 
transpiration causes at  time t ’ ,  then the third funda- 
mental assumption can be expressed as 

1 

k+ (1‘)  
e ( t f )  ’ cz=- 

where k is a constant of proportionality, whence we have 

then by differentiating we have 

or on simplifying, 

On integrating this last expression between the limits 0 
and t’ and then solving for 2 we get 

(36) 

It should be emphasized that zo in equation (36) is not 
given by r(l-e-h/c) as it has been in all previous equa- 

tions, but instead ~=----r(l-e-‘~~c). 

The function e( t ’ )  is periodic in ordinary weather with 
a period of 1 day. As this function incremes, the rate of 
run-off decreases, and vice versa: The rate of evapora- 
tivit &(t ’ )  may be, and usually is, peTiodiF also, but its 

run-off. 
To obtain an expression for the discharge, equation (36) 

is integrated over the drainage area with due regard to the 
time required for water to flow from where it fell as rain 
to the gage. This is done by repla.cing t’ by t’-x/v and 
integrating with respect to x between the proper limits. 
I t  is evident that the exponential in equation (36) does 
not change rapidly with R, change in t’.  Therefore if 
e ( t f  -zl/v) corresponds to (or, rather, equals) O(t ’  -zz/v), 
the times t’-q/v m d  t‘-z2/u differing by 1 day, then on 
integra.ting equation (36) between t,he limits x1 and 2 2 ,  the 
periodicity disappears. As the velocity of the water 18 
not very great when streams-are low, the distance which 
water will travel in 1 day is not relatively great, and 
therefore the stream at, the outlet of a dramage area of 
moderate length does not display a noticeable diurnal 
va.riat,ion in its discharge. Moreover the other irregu- 
larities of the dramage area tend to mask this phenomenon. 

k 
0 (0) 

oscilations r do not produce any variation m the rate of 

SECTION 5: HYDROGRAPHS OF DISCHARGE 

Three hydrographs of hypothetical condit.ions are here 
computed and shown in the figures. Each hydrograph 
represents the discharge with evaporation neglect.ed aa 
well as with evaporation considered. Obviously the lower 
branch of each c.urve represents the discharge corrected 
for evaporntion. 

~ I. - 
0 /D 20 30 40 5b 60 70 80 90 /oo //o 120 

t -axis. hours 
Fiouni 14 
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FIGVHE 11. 
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FIGURE 12. 
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Figure l o 8  shows the effect of evaporation on the dis- 

charge for a relatively short rain. For this figure the 
values of the constants are as follows: to=15 hours, 
L=300 miles, W=40 miles, r=0.20 inch per hour; 
E=0.015 inch per hour; v=4 miles per hour; c=20 
hours; t=20 hours and E ~ 0 . 0 1 5  inch per hour. The 
values of E and & are very high. Such high values are 
purposely assumed so a s  to form a conclusion of the maxi- 
mum effect evaporation may have iP diminishing the height 
of the crest. For this same reason W is purposely made 
large so that the time after the rain stops may be long 
during which evaporation may take place. The maxmum 
dlscharge with evaporation neglected is 463.4 mile-inches 
per hour and 440.1 when corrected for evaporation. This 
is an extreme case and the effect of evaporation is only 
about 5 percent. In  this case the effect of evaporation 
on the time of the crest is ext.remely minute. 

Figure 11 was constructed from different values of the 
3 The figures are numbered COnS0CUtiv8ly with those in papers I and 11. 

constants. In this case the values were purposely chosen 
to show the maximum effect evaporation may have on the 
time of the crest. For this figure t0=45 hours, L=180 
miles, W=40 miles, r=0.15 inch per hour, E=0.015 
in& per hour, v=4 miles per hour; c=40 hours. It is 
further assumed that F>to+L/u. When evaporation is 
neglected, the time of the crest is 65 hours 38 minutes 
from the beginning of the rain, and is 64 hours 9 minutes 
when evaporation is considered. 

Figure 12 was constructed to show the effect of evapom- 
tion on discharge when there is no surface run-off. Here 
c”=O and c‘=c=500 hours, to= 60 hours, L=240 miles, 
W=200 miles, r=0.05 inches per hour, &=0.005 inches 
per hour, v=4 miles per hour. The effect of evaporation 
in this case is small also. Here the width of the drainage 
area has purposely been chosen 5 times as large as in the 
two earlier cases because of the scale in the figures. 

PRELIMINARY REPORT ON A STUDY OF ATMOSPHERIC CHLORIDES 
By WOODROW C. JACOBS 

[University of California, Seripps Institution of Oceanography, La Jolla, Calif., August 19381 

An investigation of the salt content of the air was 
begun at  the Scripps Institution in January 1936. The 
primary purpose of the investigation, at  the time it was 
initiated, was to attempt to prove that the formation of 
shallow haze or fog (salt haze), peculiar to coastal regions, 
is due to the presence of comparatively large salt particles 
or droplets of concentrated sea water suspended in the air. 
However, a later survey of the available literature in the 
field of colloid meteorology revealed that such an investi- 
gation might serve to fill a gap in our present knowledge 
of the sources of condensation nuclei. It was felt that a 
knowledge of the probable sizes of the particles and their 
effectiveness as condensation nuclei together with a deter- 
mination of the salt content of the air would make deduc- 
tions possible regarding the importance of the sea as .a 
source of atmospheric nuclei. 

CONDENSATION N U C L E I  A N D  ATMOSPHERIC NUCLEATION 

Since the experiments of John Aitken and C. T. R. 
Wilson, it has been known that condensation of water 
vapor will not occur at  ordinary humidities in air which 
does not contain colloid particles to act as condensation 
nuclei. Lord Kelvin (1) explained this as an effect of 
the increased vapor pressure over a convex surface, which 
would render condensation impossible in the absence of 
a nucleus. Later experiments, however, indicate that it 
is pMrrbly a question largely of true metastability. 
Si5udibs of the nature and effects’ of these nuclei have been 
made by numerous investigators, the results of whose 
researchea mziy be found in many published papers; yet, 
very littler is know foncerning the origin of those sus- 
pensoids which are whve in the atmospheric condensation 
processes. 

Dust particles were a t  first considered to be the active 
nuclei: but subseuuent investigations by Wigand (2), 
Boylk  (3), Owens*(4) and oth&s have provedbeyond a 
doubt that these neutral particles will act only at enor- 
mous degrees of supersaturation. Aggregates of the air 
molecules and complex water molecules may also be 
eliminated from further consideration on the same grounds. 
Molecular ions have ,been considered, but C. T. R. Wilson 
proved that they were effective only under the extreme 

1 The term “salt”, herein used, is not limited to NaCl. 

conditions imposed within his cloud chamber. He found 
that to produce condensation on negative ions a relative 
humidity of 420 percent is required, on positive ions 790 
percent. Appreciable supersaturation is necessary before 
condensation will take place on even those large, slow- 
moving, charged particles, the Langevin ions ; therefore, 
it seems as though we may safely disregard these, too, as 
being effective in an atmosphere where such a state seldom 
exists. In  fact, as stated by Willett (5): 

The whole trend at present, in the light of increasing observational 
data on the conditions actually prevailing in clouds where condensa- 
tion is taking placle, is to postulata an ever smaller degree of super- 
saturation in these prowsses. 
It has been observed many times that fogs and clouds 
frequently form at relative humidities well below 100 Pr- 
cent, which condition seems to be the rule in some locdrtles 
rather than the exception. On the other hand, even very 
slight degrees of supersaturation are seldom found in fogs 
and clouds and then, usually, only under extreme con- 
ditions of cooling. That this condition is more frequent 

cirrus clouds, or in cumulo nimbus 
Evidence a t  the present time.points 

to the importance of the hygroscopic aerosol m the 
condensation process: It is well known that the vapor 
pressure is lower over a solution or a hygroscopic substan?e 
than over a plane water surface, hence, such particles m 
the atmosphere, coupled with a large curvature, constitute 
extremely effective nuclei for condensation. 

AB to the origin of these particles, there is considerable 
difference of opinion. According to Bennett (6), these 
are two obvious possibilities-the sea and chimneys. It 
would be expected that the sea would contribute moat of 
those nuclei effective over and near the sea, while those 
resulting from combustion are no doubt of extreme 
importance near such sourcef of pollution. However, 
there is no evidence indicating that there has been any 
great change, except locally, in the balance of nature in 
this respect since the rise of industrialism. Therefore, 
Kohler (7), Simpson (8)) Melander (9), Ludeling (10) and 
others believe that the sea is the primary source; a re&son- 
able conclusion when it is considered that five-sevenths of . I n  support of such a theory, 

f rains, snows, and rime, found 
content even at  great distmcb 


